o
    2hAL                  	   @   s  d dl mZ d dl mZ d dlmZ d dlmZ d dlmZ d dl	m
Z
 d dlmZ dZd	d
dddddddZ									dAddZ	dBddZdCdd Z	dDd"d#ZdCd$d%Zeg d&								'dEd(d)Zed*d+g								,dFd-d.Zed/d0g								1dGd2d3Zed4d5gdHd6d7Zed8d9gdId;d<Zejjd=ejejd>e_ejje_d?Zeed@eje  eed@eje  eed@eje  dS )J    )backend)layers)keras_export)imagenet_utils)
Functional)operation_utils)
file_utilszDhttps://storage.googleapis.com/tensorflow/keras-applications/resnet/) 2cb95161c43110f7111970584f804107 4d473c1dd8becc155b73f8504c6f6626) f1aeb4b969a6efcfb50fad2f0c20cfc5 88cf7a10940856eca736dc7b7e228a21) 100835be76be38e30d865e96f2aaae62 ee4c566cf9a93f14d82f913c2dc6dd0c) 3ef43a0b657b3be2300d5770ece849e0 fac2f116257151a9d068a22e544a4917) 6343647c601c52e1368623803854d971 c0ed64b8031c3730f411d2eb4eea35b5) a49b44d1979771252814e80f8ec446f9 ed17cf2e0169df9d443503ef94b23b33) 67a5b30d522ed92f75a1f16eef299d1a 62527c363bdd9ec598bed41947b379fc) 34fb605428fcc7aa4d62f44404c11509 0f678c91647380debd923963594981b3)resnet50	resnet101	resnet152
resnet50v2resnet101v2resnet152v2	resnext50
resnext101TimagenetN  softmaxresnetc                 C   s`  |dv st |std| |dkr!|r!|dkr!td| tj|ddt ||d}|d	u r9tj|d
}nt	|sFtj||d}n|}t dkrQd}nd}tj
ddd|}tjddd|dd|}|s}tj|ddd|}tjddd|}tj
ddd|}tjdddd |}| |}|rtj|dd!d|}tjdd"d|}|rtjd#d|}t|	| tj||	d$d%|}n|d&krtjd#d|}n|d'krtjd(d|}|d	urt|}n|}t|||
d}|dkr$|tv r$|r|d) }t| d* }n
|d+ }t| d }t j|t| d,|d-}|| |S |d	ur.|| |S ).aR	  Instantiates the ResNet, ResNetV2, and ResNeXt architecture.

    Args:
        stack_fn: A function that returns output tensor for the
            stacked residual blocks.
        preact: Whether to use pre-activation or not. `True` for ResNetV2,
            `False` for ResNet and ResNeXt.
        use_bias: Whether to use biases for convolutional layers or not.
            `True` for ResNet and ResNetV2, `False` for ResNeXt.
        name: Name of the model.
        include_top: Whether to include the fully-connected
            layer at the top of the network.
        weights: One of `None` (random initialization),
            `"imagenet"` (pre-training on ImageNet),
            or the path to the weights file to be loaded.
        input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: Optional shape tuple, only to be specified
            if `include_top` is `False` (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `"channels_first"` data format). It
            should have exactly 3 inputs channels.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is `True`,
            and if no `weights` argument is specified.
        classifier_activation: A `str` or callable. The activation
            function to use on the "top" layer. Ignored unless
            `include_top=True`. Set `classifier_activation=None` to
            return the logits of the "top" layer. When loading
            pretrained weights, `classifier_activation` can only be
            `None` or `"softmax"`.
        name: The name of the model (string).

    Returns:
        A Model instance.
    >   Nr!   zThe `weights` argument should be either `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded.  Received: weights=r!   r"   zcIf using `weights='imagenet'` with `include_top=True`, `classes` should be 1000.  Received classes=       )default_sizemin_sizedata_formatrequire_flattenweightsN)shape)tensorr,   channels_last      )r/   r/   r1   	conv1_padpaddingname@         
conv1_convstridesuse_biasr5   >conv1_bnaxisepsilonr5   relu
conv1_relur5   r0   r0   rF   	pool1_pad
pool1_poolr;   r5   post_bn	post_reluavg_poolpredictions)
activationr5   avgmaxmax_poolz&_weights_tf_dim_ordering_tf_kernels.h5r   z,_weights_tf_dim_ordering_tf_kernels_notop.h5models)cache_subdir	file_hash)r   exists
ValueErrorr   obtain_input_shaper   image_data_formatr   Inputis_keras_tensorZeroPadding2DConv2DBatchNormalization
ActivationMaxPooling2DGlobalAveragePooling2Dvalidate_activationDenseGlobalMaxPooling2Dr   get_source_inputsr   WEIGHTS_HASHESget_fileBASE_WEIGHTS_PATHload_weights)stack_fnpreactr<   include_topr+   input_tensorinput_shapepoolingclassesclassifier_activationr5   weights_name	img_inputbn_axisxinputsmodel	file_namerT   weights_path ry   X/var/www/html/chatgem/venv/lib/python3.10/site-packages/keras/src/applications/resnet.pyResNet0   s   >	



r{   r/   r0   c                 C   sL  t  dkr	d}nd}|r)tjd| d||d d| }tj|d|d d	|}n| }tj|d||d
 d| } tj|d|d d	| } tjd|d d| } tj||d|d d| } tj|d|d d	| } tjd|d d| } tjd| d|d d| } tj|d|d d	| } tj|d d|| g} tjd|d d| } | S )a  A residual block for ResNet*_v1.

    Args:
        x: Input tensor.
        filters: No of filters in the bottleneck layer.
        kernel_size: Kernel size of the bottleneck layer. Defaults to `3`.
        stride: Stride of the first layer. Defaults to `1`.
        conv_shortcut: Use convolution shortcut if `True`, otherwise
            use identity shortcut. Defaults to `True`
        name(optional): Name of the block

    Returns:
        Output tensor for the residual block.
    r.   r/   r0      _0_convrI   r=   _0_bnr?   _1_conv_1_bnrB   _1_relurD   SAME_2_convr3   _2_bn_2_relu_3_conv_3_bn_add_out)r   rX   r   r\   r]   r^   Add)rt   filterskernel_sizestrideconv_shortcutr5   rs   shortcutry   ry   rz   residual_block_v1   sT   



r   r8   c                 C   sH   t | |||d d} td|d D ]}t | |d|d t| d} q| S )p  A set of stacked residual blocks.

    Args:
        x: Input tensor.
        filters: Number of filters in the bottleneck layer in a block.
        blocks: Number of blocks in the stacked blocks.
        stride1: Stride of the first layer in the first block. Defaults to `2`.
        name: Stack label.

    Returns:
        Output tensor for the stacked blocks.
    _block1r   r5   r8   r0   F_blockr   r5   )r   rangestrrt   r   blocksstride1r5   iry   ry   rz   stack_residual_blocks_v1  s   r   Fc           	      C   sh  t  dkr	d}nd}tj|d|d d| }tjd|d d	|}|r4tjd
| d||d d|}n|dkrAtjd|d| n| }tj|ddd|d d|} tj|d|d d| } tjd|d d	| } tjd|d d| } tj|||d|d d| } tj|d|d d| } tjd|d d	| } tjd
| d|d d	| } tj|d d	|| g} | S )a  A residual block for ResNet*_v2.

    Args:
        x: Input tensor.
        filters: No of filters in the bottleneck layer.
        kernel_size: Kernel size of the bottleneck layer. Defaults to `3`.
        stride: Stride of the first layer. Defaults to `1`.
        conv_shortcut: Use convolution shortcut if `True`, otherwise
            use identity shortcut. Defaults to `True`
        name(optional): Name of the block

    Returns:
        Output tensor for the residual block.
    r.   r/   r0   r=   
_preact_bnr?   rB   _preact_relurD   r|   r}   rI   )r;   Fr   r:   r   r   rE   _2_padr3   r   r   r   r   r   )	r   rX   r   r]   r^   r\   r_   r[   r   )	rt   r   r   r   r   r5   rs   rj   r   ry   ry   rz   residual_block_v2*  s^   


r   c                 C   s^   t | |d|d d} td|D ]}t | ||d t| d} qt | |||d t| d} | S )r   Tr   r   r8   r   rD   r   )r   r   r   r   ry   ry   rz   stack_residual_blocks_v2i  s   r   )z$keras.applications.resnet50.ResNet50z"keras.applications.resnet.ResNet50zkeras.applications.ResNet50r   c           	      C   s(   dd }t |ddd|| ||||||dS )z'Instantiates the ResNet50 architecture.c                 S   B   t | ddddd} t | dddd	} t | d
ddd	} t | dddd	S )Nr6   r/   r0   conv2r   r5      r|   conv3rD         conv4   conv5r   rt   ry   ry   rz   ri        zResNet50.<locals>.stack_fnFTr   )rj   r<   rq   r5   rk   r+   rl   rm   rn   ro   rp   r{   	rk   r+   rl   rm   rn   ro   rp   r5   ri   ry   ry   rz   ResNet50  s   r   z#keras.applications.resnet.ResNet101zkeras.applications.ResNet101r   c           	      C   (   dd }t |dd|d| ||||||dS )z(Instantiates the ResNet101 architecture.c                 S   r   )Nr6   r/   r0   r   r   r   r|   r   rD   r      r   r   r   r   r   ry   ry   rz   ri     r   zResNet101.<locals>.stack_fnFTr   rj   r<   r5   rq   rk   r+   rl   rm   rn   ro   rp   r   r   ry   ry   rz   	ResNet101     r   z#keras.applications.resnet.ResNet152zkeras.applications.ResNet152r   c           	      C   r   )z(Instantiates the ResNet152 architecture.c                 S   r   )Nr6   r/   r0   r   r   r      r   rD   r   $   r   r   r   r   r   ry   ry   rz   ri     r   zResNet152.<locals>.stack_fnFTr   r   r   r   ry   ry   rz   	ResNet152  r   r   z,keras.applications.resnet50.preprocess_inputz*keras.applications.resnet.preprocess_inputc                 C   s   t j| |ddS )Ncaffe)r)   mode)r   preprocess_input)rt   r)   ry   ry   rz   r     s   r   z.keras.applications.resnet50.decode_predictionsz,keras.applications.resnet.decode_predictions   c                 C   s   t j| |dS )N)top)r   decode_predictions)predsr   ry   ry   rz   r     s   r    )r   reterroraj
  

Reference:
- [Deep Residual Learning for Image Recognition](
    https://arxiv.org/abs/1512.03385) (CVPR 2015)

For image classification use cases, see [this page for detailed examples](
    https://keras.io/api/applications/#usage-examples-for-image-classification-models).

For transfer learning use cases, make sure to read the
[guide to transfer learning & fine-tuning](
    https://keras.io/guides/transfer_learning/).

Note: each Keras Application expects a specific kind of input preprocessing.
For ResNet, call `keras.applications.resnet.preprocess_input` on your
inputs before passing them to the model. `resnet.preprocess_input` will convert
the input images from RGB to BGR, then will zero-center each color channel with
respect to the ImageNet dataset, without scaling.

Args:
    include_top: whether to include the fully-connected
        layer at the top of the network.
    weights: one of `None` (random initialization),
        `"imagenet"` (pre-training on ImageNet), or the path to the weights
        file to be loaded.
    input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model.
    input_shape: optional shape tuple, only to be specified if `include_top`
        is `False` (otherwise the input shape has to be `(224, 224, 3)`
        (with `"channels_last"` data format) or `(3, 224, 224)`
        (with `"channels_first"` data format). It should have exactly 3
        inputs channels, and width and height should be no smaller than 32.
        E.g. `(200, 200, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction when `include_top`
        is `False`.
        - `None` means that the output of the model will be the 4D tensor
                output of the last convolutional block.
        - `avg` means that global average pooling will be applied to the output
                of the last convolutional block, and thus the output of the
                model will be a 2D tensor.
        - `max` means that global max pooling will be applied.
    classes: optional number of classes to classify images into, only to be
        specified if `include_top` is `True`, and if no `weights` argument is
        specified. Defaults to `1000`.
    classifier_activation: A `str` or callable. The activation function to
        use on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.
    name: The name of the model (string).

Returns:
    A Model instance.
__doc__)	Tr!   NNNr"   r#   r$   N)r/   r0   TN)r8   N)r/   r0   FN)Tr!   NNNr"   r#   r   )Tr!   NNNr"   r#   r   )Tr!   NNNr"   r#   r   )N)r   ) 	keras.srcr   r   keras.src.api_exportr   keras.src.applicationsr   keras.src.modelsr   keras.src.opsr   keras.src.utilsr   rg   re   r{   r   r   r   r   r   r   r   r   r   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_CAFFEPREPROCESS_INPUT_ERROR_DOCr   DOCsetattrry   ry   ry   rz   <module>   s    (
 -

9

?"""
7