o
    2hc                     @   s  d dl mZ d dlmZ d dlmZ eddg								
	d#ddZeddg								
	d$ddZeddg								
	d%ddZedd&ddZedd'ddZ	ej
jdejejd e_ej	je	_d!Zeed"eje  eed"eje  eed"eje  dS )(    )keras_export)imagenet_utils)resnetzkeras.applications.ResNet50V2z'keras.applications.resnet_v2.ResNet50V2TimagenetN  softmax
resnet50v2c           	      C   *   dd }t j|dd|d| ||||||dS )z)Instantiates the ResNet50V2 architecture.c                 S   J   t j| dddd} t j| dddd} t j| dd	d
d} t j| dddddS )N@      conv2name      conv3      conv4      conv5stride1r   r   stack_residual_blocks_v2x r   [/var/www/html/chatgem/venv/lib/python3.10/site-packages/keras/src/applications/resnet_v2.pystack_fn      
zResNet50V2.<locals>.stack_fnTr   	r   weights_nameinclude_topweightsinput_tensorinput_shapepoolingclassesclassifier_activationr   ResNet	r%   r&   r'   r(   r)   r*   r+   r   r!   r   r   r    
ResNet50V2      r/   zkeras.applications.ResNet101V2z(keras.applications.resnet_v2.ResNet101V2resnet101v2c           	      C   r	   )z*Instantiates the ResNet101V2 architecture.c                 S   r
   )Nr   r   r   r   r   r   r   r      r   r   r   r   r   r   r   r   r   r    r!   B   r"   zResNet101V2.<locals>.stack_fnTr1   r#   r,   r.   r   r   r    ResNet101V20   r0   r3   zkeras.applications.ResNet152V2z(keras.applications.resnet_v2.ResNet152V2resnet152v2c           	      C   r	   )z*Instantiates the ResNet152V2 architecture.c                 S   r
   )Nr   r   r   r   r      r   r   $   r   r   r   r   r   r   r   r   r   r    r!   l   r"   zResNet152V2.<locals>.stack_fnTr4   r#   r,   r.   r   r   r    ResNet152V2Z   r0   r7   z-keras.applications.resnet_v2.preprocess_inputc                 C   s   t j| |ddS )Ntf)data_formatmode)r   preprocess_input)r   r9   r   r   r    r;      s   r;   z/keras.applications.resnet_v2.decode_predictions   c                 C   s   t j| |dS )N)top)r   decode_predictions)predsr=   r   r   r    r>      s   r>    )r:   reterrora	  

Reference:
- [Identity Mappings in Deep Residual Networks](
    https://arxiv.org/abs/1603.05027) (CVPR 2016)

For image classification use cases, see [this page for detailed examples](
    https://keras.io/api/applications/#usage-examples-for-image-classification-models).

For transfer learning use cases, make sure to read the
[guide to transfer learning & fine-tuning](
    https://keras.io/guides/transfer_learning/).

Note: each Keras Application expects a specific kind of input preprocessing.
For ResNet, call `keras.applications.resnet_v2.preprocess_input` on your
inputs before passing them to the model. `resnet_v2.preprocess_input` will
scale input pixels between -1 and 1.

Args:
    include_top: whether to include the fully-connected
        layer at the top of the network.
    weights: one of `None` (random initialization),
        `"imagenet"` (pre-training on ImageNet), or the path to the weights
        file to be loaded.
    input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model.
    input_shape: optional shape tuple, only to be specified if `include_top`
        is `False` (otherwise the input shape has to be `(224, 224, 3)`
        (with `"channels_last"` data format) or `(3, 224, 224)`
        (with `"channels_first"` data format). It should have exactly 3
        inputs channels, and width and height should be no smaller than 32.
        E.g. `(200, 200, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction when `include_top`
        is `False`.
        - `None` means that the output of the model will be the 4D tensor
                output of the last convolutional block.
        - `avg` means that global average pooling will be applied to the output
                of the last convolutional block, and thus the output of the
                model will be a 2D tensor.
        - `max` means that global max pooling will be applied.
    classes: optional number of classes to classify images into, only to be
        specified if `include_top` is `True`, and if no `weights` argument is
        specified.
    classifier_activation: A `str` or callable. The activation function to
        use on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.
    name: The name of the model (string).

Returns:
    A Model instance.
__doc__)Tr   NNNr   r   r   )Tr   NNNr   r   r1   )Tr   NNNr   r   r4   )N)r<   )keras.src.api_exportr   keras.src.applicationsr   r   r/   r3   r7   r;   r>   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_TFPREPROCESS_INPUT_ERROR_DOCrC   DOCsetattrr   r   r   r    <module>   sv    $$$
6