o
    ·2úhf  ã                   @   sP   d dl mZ d dlmZ d dlmZ edƒG dd„ deƒƒZedƒdd	„ ƒZd
S )é    )Úops)Úkeras_export)ÚMergezkeras.layers.Addc                   @   s   e Zd ZdZdd„ ZdS )ÚAdda0  Performs elementwise addition operation.

    It takes as input a list of tensors, all of the same shape,
    and returns a single tensor (also of the same shape).

    Examples:

    >>> input_shape = (2, 3, 4)
    >>> x1 = np.random.rand(*input_shape)
    >>> x2 = np.random.rand(*input_shape)
    >>> y = keras.layers.Add()([x1, x2])

    Usage in a Keras model:

    >>> input1 = keras.layers.Input(shape=(16,))
    >>> x1 = keras.layers.Dense(8, activation='relu')(input1)
    >>> input2 = keras.layers.Input(shape=(32,))
    >>> x2 = keras.layers.Dense(8, activation='relu')(input2)
    >>> # equivalent to `added = keras.layers.add([x1, x2])`
    >>> added = keras.layers.Add()([x1, x2])
    >>> out = keras.layers.Dense(4)(added)
    >>> model = keras.models.Model(inputs=[input1, input2], outputs=out)

    c                 C   s0   |d }t dt|ƒƒD ]
}t ||| ¡}q|S )Nr   é   )ÚrangeÚlenr   Úadd)ÚselfÚinputsÚoutputÚi© r   úW/var/www/html/chatgem/venv/lib/python3.10/site-packages/keras/src/layers/merging/add.pyÚ_merge_function!   s   zAdd._merge_functionN)Ú__name__Ú
__module__Ú__qualname__Ú__doc__r   r   r   r   r   r      s    r   zkeras.layers.addc                 K   s   t di |¤Ž| ƒS )a[  Functional interface to the `keras.layers.Add` layer.

    Args:
        inputs: A list of input tensors with the same shape.
        **kwargs: Standard layer keyword arguments.

    Returns:
        A tensor as the sum of the inputs. It has the same shape as the inputs.

    Examples:

    >>> input_shape = (2, 3, 4)
    >>> x1 = np.random.rand(*input_shape)
    >>> x2 = np.random.rand(*input_shape)
    >>> y = keras.layers.add([x1, x2])

    Usage in a Keras model:

    >>> input1 = keras.layers.Input(shape=(16,))
    >>> x1 = keras.layers.Dense(8, activation='relu')(input1)
    >>> input2 = keras.layers.Input(shape=(32,))
    >>> x2 = keras.layers.Dense(8, activation='relu')(input2)
    >>> added = keras.layers.add([x1, x2])
    >>> out = keras.layers.Dense(4)(added)
    >>> model = keras.models.Model(inputs=[input1, input2], outputs=out)

    Nr   )r   )r   Úkwargsr   r   r   r	   (   s   r	   N)Ú	keras.srcr   Úkeras.src.api_exportr   Ú#keras.src.layers.merging.base_merger   r   r	   r   r   r   r   Ú<module>   s    !