o
    ·2úh\  ã                   @   sP   d dl mZ d dlmZ d dlmZ edƒG dd„ deƒƒZedƒdd	„ ƒZd
S )é    )Úops)Úkeras_export)ÚMergezkeras.layers.Minimumc                   @   s   e Zd ZdZdd„ ZdS )ÚMinimuma9  Computes elementwise minimum on a list of inputs.

    It takes as input a list of tensors, all of the same shape,
    and returns a single tensor (also of the same shape).

    Examples:

    >>> input_shape = (2, 3, 4)
    >>> x1 = np.random.rand(*input_shape)
    >>> x2 = np.random.rand(*input_shape)
    >>> y = keras.layers.Minimum()([x1, x2])

    Usage in a Keras model:

    >>> input1 = keras.layers.Input(shape=(16,))
    >>> x1 = keras.layers.Dense(8, activation='relu')(input1)
    >>> input2 = keras.layers.Input(shape=(32,))
    >>> x2 = keras.layers.Dense(8, activation='relu')(input2)
    >>> # equivalent to `y = keras.layers.minimum([x1, x2])`
    >>> y = keras.layers.Minimum()([x1, x2])
    >>> out = keras.layers.Dense(4)(y)
    >>> model = keras.models.Model(inputs=[input1, input2], outputs=out)

    c                 C   s   |   tj|¡S )N)Ú_apply_merge_op_and_or_maskr   Úminimum)ÚselfÚinputs© r
   ú[/var/www/html/chatgem/venv/lib/python3.10/site-packages/keras/src/layers/merging/minimum.pyÚ_merge_function!   s   zMinimum._merge_functionN)Ú__name__Ú
__module__Ú__qualname__Ú__doc__r   r
   r
   r
   r   r      s    r   zkeras.layers.minimumc                 K   s   t di |¤Ž| ƒS )ax  Functional interface to the `keras.layers.Minimum` layer.

    Args:
        inputs: A list of input tensors , all of the same shape.
        **kwargs: Standard layer keyword arguments.

    Returns:
        A tensor as the elementwise product of the inputs with the same
        shape as the inputs.

    Examples:

    >>> input_shape = (2, 3, 4)
    >>> x1 = np.random.rand(*input_shape)
    >>> x2 = np.random.rand(*input_shape)
    >>> y = keras.layers.minimum([x1, x2])

    Usage in a Keras model:

    >>> input1 = keras.layers.Input(shape=(16,))
    >>> x1 = keras.layers.Dense(8, activation='relu')(input1)
    >>> input2 = keras.layers.Input(shape=(32,))
    >>> x2 = keras.layers.Dense(8, activation='relu')(input2)
    >>> y = keras.layers.minimum([x1, x2])
    >>> out = keras.layers.Dense(4)(y)
    >>> model = keras.models.Model(inputs=[input1, input2], outputs=out)

    Nr
   )r   )r	   Úkwargsr
   r
   r   r   %   s   r   N)Ú	keras.srcr   Úkeras.src.api_exportr   Ú#keras.src.layers.merging.base_merger   r   r   r
   r
   r
   r   Ú<module>   s    