o
    2h,                     @   s  d Z ddlmZ ddlmZ ddlmZ ddlmZ ddlm	Z	 ddlm
Z
 ddlmZ dd	lmZ dd
lmZ G dd dZG dd deZG dd deZG dd deZG dd deZG dd deZeZeZeZeZeZeZeZeZdd ZdddZdd ZdS )z@Constraints: functions that impose constraints on weight values.    )tensor_shape)backend)deserialize_keras_objectserialize_keras_object)	array_ops)array_ops_stack)math_ops)
while_loop)doc_controlsc                   @   s    e Zd ZdZdd Zdd ZdS )
ConstraintaK  Base class for weight constraints.

  A `Constraint` instance works like a stateless function.
  Users who subclass this
  class should override the `__call__` method, which takes a single
  weight parameter and return a projected version of that parameter
  (e.g. normalized or clipped). Constraints can be used with various Keras
  layers via the `kernel_constraint` or `bias_constraint` arguments.

  Here's a simple example of a non-negative weight constraint:

  >>> class NonNegative(tf.keras.constraints.Constraint):
  ...
  ...  def __call__(self, w):
  ...    return w * tf.cast(tf.math.greater_equal(w, 0.), w.dtype)

  >>> weight = tf.constant((-1.0, 1.0))
  >>> NonNegative()(weight)
  <tf.Tensor: shape=(2,), dtype=float32, numpy=array([0.,  1.], dtype=float32)>

  >>> tf.keras.layers.Dense(4, kernel_constraint=NonNegative())
  c                 C   s   |S )aG  Applies the constraint to the input weight variable.

    By default, the inputs weight variable is not modified.
    Users should override this method to implement their own projection
    function.

    Args:
      w: Input weight variable.

    Returns:
      Projected variable (by default, returns unmodified inputs).
     selfwr   r   ^/var/www/html/chatgem/venv/lib/python3.10/site-packages/tensorflow/python/keras/constraints.py__call__6   s   zConstraint.__call__c                 C   s   i S )a  Returns a Python dict of the object config.

    A constraint config is a Python dictionary (JSON-serializable) that can
    be used to reinstantiate the same object.

    Returns:
      Python dict containing the configuration of the constraint object.
    r   r   r   r   r   
get_configE   s   	zConstraint.get_configN)__name__
__module____qualname____doc__r   r   r   r   r   r   r      s    r   c                   @   s6   e Zd ZdZdddZejdd Zejdd	 Zd
S )MaxNorma/  MaxNorm weight constraint.

  Constrains the weights incident to each hidden unit
  to have a norm less than or equal to a desired value.

  Also available via the shortcut function `tf.keras.constraints.max_norm`.

  Args:
    max_value: the maximum norm value for the incoming weights.
    axis: integer, axis along which to calculate weight norms.
      For instance, in a `Dense` layer the weight matrix
      has shape `(input_dim, output_dim)`,
      set `axis` to `0` to constrain each weight vector
      of length `(input_dim,)`.
      In a `Conv2D` layer with `data_format="channels_last"`,
      the weight tensor has shape
      `(rows, cols, input_depth, output_depth)`,
      set `axis` to `[0, 1, 2]`
      to constrain the weights of each filter tensor of size
      `(rows, cols, input_depth)`.

     r   c                 C   s   || _ || _d S N	max_valueaxis)r   r   r   r   r   r   __init__i   s   
zMaxNorm.__init__c                 C   sB   t tjt|| jdd}t |d| j}||t  |   S )NTr   keepdimsr   )	r   sqrtr	   
reduce_sumsquarer   clipr   epsilonr   r   normsdesiredr   r   r   r   m   s
   zMaxNorm.__call__c                 C   s   | j | jdS )Nr   r   r   r   r   r   r   t   s   zMaxNorm.get_configN)r   r   	r   r   r   r   r   r   do_not_generate_docsr   r   r   r   r   r   r   Q   s    

r   c                   @   s   e Zd ZdZdd ZdS )NonNegzyConstrains the weights to be non-negative.

  Also available via the shortcut function `tf.keras.constraints.non_neg`.
  c                 C   s   |t t |dt  S )N        )r	   castgreater_equalr   floatxr   r   r   r   r      s   zNonNeg.__call__N)r   r   r   r   r   r   r   r   r   r,   y   s    r,   c                   @   s6   e Zd ZdZd
ddZejdd Zejdd Zd	S )UnitNorma  Constrains the weights incident to each hidden unit to have unit norm.

  Also available via the shortcut function `tf.keras.constraints.unit_norm`.

  Args:
    axis: integer, axis along which to calculate weight norms.
      For instance, in a `Dense` layer the weight matrix
      has shape `(input_dim, output_dim)`,
      set `axis` to `0` to constrain each weight vector
      of length `(input_dim,)`.
      In a `Conv2D` layer with `data_format="channels_last"`,
      the weight tensor has shape
      `(rows, cols, input_depth, output_depth)`,
      set `axis` to `[0, 1, 2]`
      to constrain the weights of each filter tensor of size
      `(rows, cols, input_depth)`.
  r   c                 C   s
   || _ d S r   r   )r   r   r   r   r   r      s   
zUnitNorm.__init__c              	   C   s*   |t  t tjt|| jdd  S )NTr    )r   r&   r"   r	   r#   r$   r   r   r   r   r   r      s   
zUnitNorm.__call__c                 C   s
   d| j iS )Nr   r2   r   r   r   r   r      s   
zUnitNorm.get_configN)r   r*   r   r   r   r   r1      s    

r1   c                   @   s6   e Zd ZdZdddZejdd Zejd	d
 ZdS )
MinMaxNorma  MinMaxNorm weight constraint.

  Constrains the weights incident to each hidden unit
  to have the norm between a lower bound and an upper bound.

  Also available via the shortcut function `tf.keras.constraints.min_max_norm`.

  Args:
    min_value: the minimum norm for the incoming weights.
    max_value: the maximum norm for the incoming weights.
    rate: rate for enforcing the constraint: weights will be
      rescaled to yield
      `(1 - rate) * norm + rate * norm.clip(min_value, max_value)`.
      Effectively, this means that rate=1.0 stands for strict
      enforcement of the constraint, while rate<1.0 means that
      weights will be rescaled at each step to slowly move
      towards a value inside the desired interval.
    axis: integer, axis along which to calculate weight norms.
      For instance, in a `Dense` layer the weight matrix
      has shape `(input_dim, output_dim)`,
      set `axis` to `0` to constrain each weight vector
      of length `(input_dim,)`.
      In a `Conv2D` layer with `data_format="channels_last"`,
      the weight tensor has shape
      `(rows, cols, input_depth, output_depth)`,
      set `axis` to `[0, 1, 2]`
      to constrain the weights of each filter tensor of size
      `(rows, cols, input_depth)`.
  r-         ?r   c                 C   s   || _ || _|| _|| _d S r   	min_valuer   rater   )r   r6   r   r7   r   r   r   r   r      s   
zMinMaxNorm.__init__c                 C   sX   t tjt|| jdd}| jt || j| j	 d| j |  }||t 
 |   S )NTr       )r   r"   r	   r#   r$   r   r7   r%   r6   r   r&   r'   r   r   r   r      s   zMinMaxNorm.__call__c                 C   s   | j | j| j| jdS )Nr5   r5   r   r   r   r   r      s
   zMinMaxNorm.get_configN)r-   r4   r4   r   r*   r   r   r   r   r3      s    

r3   c                   @   s&   e Zd ZdZejdd Zdd ZdS )RadialConstraintas  Constrains `Conv2D` kernel weights to be the same for each radius.

  Also available via the shortcut function
  `tf.keras.constraints.radial_constraint`.

  For example, the desired output for the following 4-by-4 kernel:

  ```
      kernel = [[v_00, v_01, v_02, v_03],
                [v_10, v_11, v_12, v_13],
                [v_20, v_21, v_22, v_23],
                [v_30, v_31, v_32, v_33]]
  ```

  is this::

  ```
      kernel = [[v_11, v_11, v_11, v_11],
                [v_11, v_33, v_33, v_11],
                [v_11, v_33, v_33, v_11],
                [v_11, v_11, v_11, v_11]]
  ```

  This constraint can be applied to any `Conv2D` layer version, including
  `Conv2DTranspose` and `SeparableConv2D`, and with either `"channels_last"` or
  `"channels_first"` data format. The method assumes the weight tensor is of
  shape `(rows, cols, input_depth, output_depth)`.
  c                 C   s   |j }|jd u s|jdkrtd| |\}}}}t||||| f}t| jtjtj	|dddd}ttjtj	|dddd||||fS )N   z8The weight tensor must be of rank 4, but is of shape: %sr2   r   )
shaperank
ValueErrorr   reshapemap_fn_kernel_constraintstackr   unstack)r   r   w_shapeheightwidthchannelskernelsr   r   r   r      s   
zRadialConstraint.__call__c              	      s   t jddgddggddt  d }t |d dt t t|dd fdd fd	d}t t t|ddd
d dd }fdd} fdd}tj||||g| t	
ddggd\}}|S )zCRadially constraints a kernel with shape (height, width, channels).r8   int32dtyper   r   boolc                      s    d d f S )Nr8   r   r   kernelstartr   r   <lambda>  s    z5RadialConstraint._kernel_constraint.<locals>.<lambda>c                      s,    d d f t jd jd S )Nr8   )r   r   rJ   )r   zerosrK   r   rM   r   r   rP     s    c                   S      t jdddS )Nr   rI   rJ   r   constantr   r   r   r   rP         c                   S   rR   )Nr8   rI   rJ   rS   r   r   r   r   rP     rU   c                    s   t |  S r   )r   less)indexargs)rO   r   r   rP     s    c                    s(   | d t j| |  |  f dfS )Nr8   )constant_values)r   pad)iarrayrN   paddingrO   r   r   body_fn  s
   
z4RadialConstraint._kernel_constraint.<locals>.body_fnN)shape_invariants)r   rT   r<   r.   switchr	   floormodr
   	get_shaper   TensorShape)r   rN   kernel_shape
kernel_newrW   while_conditionr_   _r   r]   r   rA     s.   
z#RadialConstraint._kernel_constraintN)r   r   r   r   r   r+   r   rA   r   r   r   r   r9      s
    
r9   c                 C   s   t | S r   r   )
constraintr   r   r   	serialize=  s   rj   Nc                 C   s   t | t |ddS )Nri   )module_objectscustom_objectsprintable_module_name)r   globals)configrl   r   r   r   deserializeA  s   rp   c                 C   sZ   | d u rd S t | trt| S t | trt| i d}t|S t| r%| S tdt|  )N)
class_namero   z+Could not interpret constraint identifier: )
isinstancedictrp   strcallabler>   )
identifierro   r   r   r   getI  s   

rw   r   ) r   tensorflow.python.frameworkr   tensorflow.python.kerasr   +tensorflow.python.keras.utils.generic_utilsr   r   tensorflow.python.opsr   r   r	   r
   tensorflow.tools.docsr   r   r   r,   r1   r3   r9   max_normnon_neg	unit_normmin_max_normradial_constraintmaxnormnonnegunitnormrj   rp   rw   r   r   r   r   <module>   s6   3(
"8T
